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Abstract
We discuss a basis set developed to calculate perturbation coefficients in an
expansion of the general N-body problem. This basis has two advantages. First,
the basis is complete order-by-order for the perturbation series. Second, the
number of independent basis tensors spanning the space for a given order does
not scale with N, the number of particles, despite the generality of the problem.
At first order, the number of basis tensors is 25 for all N, i.e. the problem
scales as N0, although one would initially expect an N6 scaling at first order.
The perturbation series is expanded in inverse powers of the spatial dimension.
This results in a maximally symmetric configuration at lowest order which
has a point group isomorphic with the symmetric group, SN . The resulting
perturbation series is order-by-order invariant under the N ! operations of the
SN point group which is responsible for the slower than exponential growth
of the basis. In this paper, we demonstrate the completeness of the basis and
perform the first test of this formalism through first order by comparing to
an exactly solvable fully interacting problem of N particles with a two-body
harmonic interaction potential.

PACS numbers: 03.65.Ge, 31.15.xh, 31.15.xp, 02.10.Xm

1. Introduction

In a previous paper [1], we described the development of a perturbation method for the general
S-wave N-body problem through first order. Group theoretic and graphical techniques were
used to describe the interacting N-body wavefunction for a system of identical bosons with
general interactions. Solutions for this problem are known to scale exponentially with N
requiring that resources be essentially doubled for each particle added [2, 3]. As N increases
beyond a few tens of particles, this growth makes a direct numerical simulation intractable
without approximations given current numerical resources. Typical approximations truncate
the Hilbert space of the exact solution by using a basis that spans a smaller Hilbert space or by
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truncating a perturbation series or both [4–20]. With bosonic systems, various Monte Carlo
approaches may be employed which scale in a polynomial fashion with N, making larger-N
calculations feasible [7–15, 17].

In [1], a perturbation series is developed in inverse powers of the spatial dimension.
This results in a maximally symmetric configuration at lowest order having a point group
isomorphic to the symmetric group SN . The basis used is complete at each order, finite, and,
in fact small, having only 25 members at first order, despite the N6 scaling of the problem at
this order.

In this paper, we test this formalism which truncates the perturbation series, but determines
each term in the series exactly using group theory and graphical techniques. This perturbation
series is order-by-order invariant under the operations of the SN point group. The tensor blocks
needed at each order can thus be decomposed into a basis also invariant under the SN point
group. It is this restriction, i.e. the invariance under N ! permutations, that stops the growth of
the number of basis tensors as N increases, resulting in a basis that is small in contrast to the
N6 growth of the vector space at first order.

We have named the basis tensors, ‘binary invariants’. ‘Binary’ because the elements
within a basis tensor are ones or zeros; ‘invariants’ because the basis tensors are invariant
under N ! permutations of the particle labels.

This strategy effectively separates the N scaling away from the rest of the physics and
then tackles the N-scaling problem using the symmetry of the SN group. The full problem, of
course, scales exponentially in N, so as higher orders of the perturbation series are included
the full exponential N scaling of the problem will appear. However, in this methodology, the
N scaling problem has been compartmentalized away from the rest of the physics and dealt
with using group theoretic and graphical techniques; i.e. it becomes a straight mathematical
problem. Once this mathematical work, which involves significant analytical effort, has been
completed at a given order, it never has to be repeated again for a new interaction or a different
number of particles, i.e. the problem now scales as N0.

The formalism being tested in this paper has been presented in a series of papers beginning
with the isotropic, lowest-order ground-state wavefunction [21], the isotropic, lowest-order
ground-state density profile [22] (a brief four page summary of the method at lowest order,
along with some lowest-order results, may be found in [23]), and the isotropic, first-order
ground-state wavefunction [1].

In section 2, we review the large-dimension point group symmetry and discuss its
implications in perturbation theory. In section 3, we discuss the binary invariants themselves
and the graphs which label them, and in section 4 we very briefly review the general theory
for the wavefunction through first order from [1]. In section 5, we compare the results of
the general theory for the wavefunction through first order applied to the problem of the
harmonically interacting system under harmonic confinement with an expansion of the exact
interacting wavefunction through first order. This work is performed in the appendix where we
exactly solve for the wavefunction of the harmonically interacting N-particle problem under
harmonic confinement in D dimensions. This exact solution is then expanded through first
order in the square root of the inverse dimension of space.

2. The large-dimension, point group symmetry and its implications in perturbation
theory

As discussed in previous papers, the Hamiltonian and Jacobian-weighted wavefunction and
energy are expanded in powers of δ1/2 , where δ = 1/D:
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H̄ = H̄∞ + δ
1
2 H̄−1 + δ

∞∑
j=0

(
δ

1
2
)j

H̄j

�(r̄i , γij ) =
∞∑

j=0

(
δ

1
2
)j

�j ,

Ē = Ē∞ + δ
1
2 Ē−1 + δ

∞∑
j=0

(
δ

1
2
)j

Ēj ,

(1)

where

H̄∞ = Ē∞, (2)

H̄−1 = Ē2n−1 = 0, (3)

H̄0 = − 1
2

(0)
2 Gν1,ν2

∂ȳ ′
ν1
∂ȳ ′

ν2
+ 1

2
(0)
2 Fν1,ν2

ȳ ′
ν1

ȳ ′
ν2

+ (0)
0 F , (4)

H̄1 = − 1
2

(1)
3 Gν1,ν2,ν3

ȳ ′
ν1

∂ȳ ′
ν2
∂ȳ ′

ν3
− 1

2
(1)
1 Gν ∂ȳ ′

ν
+ 1

3!
(1)
3 Fν1,ν2,ν3

ȳ ′
ν1

ȳ ′
ν2

ȳ ′
ν3

+ (1)
1 Fν ȳ ′

ν . (5)

The internal displacement coordinate vector ȳ ′
ν is a column vector composed of the

displacement radii r̄ ′
i and the displacement angle cosines γ̄ ′

i,j :

ȳ′ =
(
r̄ ′
γ ′

)
, where

and r̄′ =

⎛
⎜⎜⎜⎝

r̄ ′
1

r̄ ′
2
...

r̄ ′
N

⎞
⎟⎟⎟⎠ ,

γ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ ′
12

γ ′
13

γ ′
23

γ ′
14

γ ′
24

γ ′
34

γ ′
15

γ ′
25
...

γ ′
N−2,N

γ ′
N−1,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

and is related to the dimensionally scaled internal coordinates by

r̄i = r̄∞ + δ1/2r̄ ′
i and γij = γ∞ + δ1/2γ ′

ij , (7)

where r̄i are the dimensionally scaled radii and γij are the angle cosines between the position
vectors of the N particles.

The superprescript on the F and G tensors in parentheses in equations (3)–(5) denotes
the order in δ1/2 that the term enters (harmonic being zeroth order). The subprescripts denote
the rank of the tensors.

In general, H̄n is of order n + 2 in the elements and derivatives of ȳ′ (second order in the
derivatives), and formed of either all even or all odd powers of the elements and derivatives of
ȳ′ when n is even or odd, respectively.

According to equation (7) the system localizes as D → ∞ on a configuration centered
about r̄i = r̄∞ and γij = γ∞. This structure has the highest degree of symmetry where
all particles are equidistant from the center of the trap and equiangular from each other (a
configuration that is only possible in higher dimensions). The point group of this structure is
isomorphic to SN which in effect interchanges the particles in the large dimension structure.
This together with the fact that the full D-dimensional Hamiltonian, Ĥ , is invariant under
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particle exchange means the expansion of equation (1) is order-by-order invariant under this
SN point group, i.e. H̄j are each invariant under the SN point group. This greatly restricts the
F and G tensors of equations (4) and (5). In three dimensions a corresponding N-particle
structure would have a point group of lower symmetry, i.e. one not isomorphic to SN despite
the fact that all of the particles are identical. It is this profound restriction on the F and
G tensors from the SN point group symmetry, which in itself is a direct consequence of
developing a perturbation theory about the large-dimension limit, that allows for an essentially
analytic solution of the problem at a given order in the perturbation theory for any N. For
example, with a third-rank tensor, instead of (N(N + 1)/2)3 possible independent elements
(a number which becomes quickly intractable since, for example, with only ten particles this
would be more than a million elements), the SN point group symmetry restricts the number of
independent elements to only 23, independent of the value of N .

2.1. The reducibility of the F and G tensors under SN

The maximally symmetric point group SN , together with the invariance of the full Hamiltonian
under particle interchange, requires that the F and G tensors be invariant under the interchange
of particle labels (the SN group). In fact the various blocks of the F and G tensors are
themselves invariant under particle interchange induced by the point group. For example,
(1)
3 F

rrγ

i,j,(kl) is never transformed into (1)
3 F

γγγ

(ij),(kl)(mn) , i.e. the r and γ labels are preserved since
the SN group does not transform an r̄ ′

i coordinate into a γ ′
(ij) coordinate.

The various r − γ blocks of the F and G tensors may be decomposed into invariant, and,
this time irreducible, blocks. Thus for example, (0)

2 Q may be decomposed into the blocks

(0)
2 Qrr

i,i ∀ i

(0)
2 Qrr

i,j ∀ i �= j

(0)
2 Q

rγ

i,(ik) ∀ i < k,

(0)
2 Q

rγ

i,(jk) ∀ i �= j < k

(0)
2 Q

γγ

(ij),(ij) ∀ i < j

(0)
2 Q

γγ

(ij),(ik) ∀ i < j �= k > i

(0)
2 Q

γγ

(ij),(kl) ∀ i �= j �= k �= l,

i < j, k < l

(8)

all of which remain disjoint from one another under the SN group. Significantly, invariance
under particle interchange requires that tensor elements related by a label permutation induced
by the point group must be equal. This requirement partitions the set of tensor elements for
each block into disjoint subsets of identical elements. Consider the elements of the (0)

2 Qrr

block. The element (0)
2 Qrr

1,1 belongs to a set of N elements (of the form (0)
2 Qrr

i,i ) which are
related by a permutation induced by the point group, and therefore must have equal values.
Likewise, the element (0)

2 Qrr
1,2 belongs to a set of N(N − 1) elements related by a permutation

induced by the point group and sharing a common value. Proceeding in this fashion, we
observe that the blocks of the lowest-order tensors are partitioned into the following set of
identical elements which remain disjoint under particle interchange:

(0)
2 Qrr

i,i = (0)
2 Qrr

k,k ∀ i and k, (9)

(0)
2 Qrr

i,j = (0)
2 Qrr

k,l ∀ i �= j and k �= l, (10)
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(0)
2 Q

rγ

i,(ik) = (0)
2 Q

rγ

l,(lm) = (0)
2 Q

rγ

n,(pn) ∀ i < k, l < m and n > p, (11)

(0)
2 Q

rγ

i,(jk) = (0)
2 Q

rγ

l,(mn) ∀ i �= j < k and l �= m < n, (12)

(0)
2 Q

γγ

(ij),(ij) = (0)
2 Q

γγ

(kl),(kl) ∀ i < j and k < l (13)

(0)
2 Q

γγ

(ij),(ik) = (0)
2 Q

γγ

(lm),(ln) ∀ i < j �= k > i and l < m �= n > l, (14)

(0)
2 Q

γγ

(ij),(kl) = (0)
2 Q

γγ

(mn),(pq) ∀ i �= j �= k �= l

i < j, k < l

and m �= n �= p �= q

m < n, p < q.

(15)

The lowest-order block matrices contain the sets of elements in equations (9)–(15) arranged
in an intricate pattern. A similar, but more involved partitioning occurs for higher rank F and
G tensors.

In [1] it was shown that this decomposition could be expressed in terms of binary tensors
which are invariant under SN and are labeled by graphs. We term these binary tensors, binary
invariants.

3. Binary invariants

3.1. Introducing graphs

Definition 1. A graph G = (V ,E) is a set of vertices V and edges E. Each edge has one or
two associated vertices, which are called its endpoints [24].

For example, �� �� is a graph G with three vertices and three edges. We allow our graphs
to include loops and multiple edges3. A graph contains information regarding the connectivity
of edges and vertices only: the orientation of edges and vertices has no consequence.

We introduce a mapping which associates each tensor element with a graph as follows:

(i) draw a labeled vertex (·i) for each distinct index in the set of indices of the element;
(ii) draw an edge ( �i �j ) for each double index (ij);

(iii) draw a ‘loop’ edge ( � i� ) for each distinct single index i.

For example, the graph corresponding to the tensor element (0)
2 Q

rγ

i,(ij) under this mapping is
�i �

j� .
Two graphs with the same number of vertices and edges that are connected in the same

way are called isomorphic. The elements of the SN group are permutation operations which
interchange particle labels. Two elements with graphs that are not isomorphic are never related
by a permutation of the SN group. We label each set of isomorphic graphs by a graph with no
vertex labels. Denoting the set of unlabeled graphs for each block as GX1,X2,...,Xn

, where n is
the rank of the tensor block (and therefore the number of edges in each graph in the set) and
X is r or γ , we have

Grr = { ���, �� ��}
Gγ r = { � �� , � � �� } (16)

Gγ γ = { � ��, � �
�
,

�
�

�
�}

3 Strictly speaking, this is a ‘loop multigraph’. The definition of a graph does not allow for multiple edges between
a pair of vertices nor a ‘loop’ edge with common endpoints.
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Gr = { ��}
Gγ = {� �}
Grrr = {

� , � ��
� �

, �� �� ��
}

(17)

Gγ rr = {
� ��
�

, � �� �, � � �� �
,

�
� �
��

, � �� �
� �}

Gγ γ r = {
� ���, � � �� �, �� �� ,

�
� � �,

�
� � ��,

�
�

�
�
�
,

�
�

�
� � �

}
Gγ γ γ = {

� ��, ����
�
, � � �� , � �

�
�,

�
� �

�
,

�
�

�
�

�
,

� �
�� �,

� �� �� �
}
.

Now consider a tensor, for which all of the elements labeled by a single isomorphic set of
graphs are equal to unity, while all of the other elements labeled by graphs heteromorphic to
this single set of isomorphic graphs are equal to zero. We term this tensor a binary invariant,
[B(G)]ν1,ν2,... since it is invariant under the SN group, and we label it by the graph G, without
particle labels at the vertices, for the non-zero elements all of which are equal to unity. Thus
each of the above graphs denotes a binary invariant, [B(G)]ν1,ν2,.... Explicit expressions for
these binary invariants for arbitrary N may be found in the EPAPS document [25].

3.2. Binary invariants are a basis

That the small number of binary invariants are a complete basis with which to represent any
SN invariant tensor in the N(N + 1)/2-dimensional r̄′ – γ̄ ′ space can be seen as follows.

Lemma 1. The set of binary invariants, [B(G)]ν1,ν2,... , for all G ∈ G are linearly independent.

Proof. This follows from the fact that no binary invariant shares a non-zero element with
another binary invariant for a different graph. �

Lemma 2. The set of binary invariants for all G ∈ G spans the invariant tensor space.

Proof. From the mapping of section 3.1 above, relating graphs to tensor elements in the r̄′ –
γ̄ ′ space, every tensor element is related to an unlabeled graph, and so the binary invariants
for all possible unlabeled graphs span the invariant tensor subspace. �

Theorem 1. The set of binary invariants {B(G) : G ∈ G} forms a basis for the SN variant
Hamiltonian coefficient tensors.

Proof. This result follows from the definition of a basis and that the set of binary invariants
for all G ∈ G is linearly independent and spans the vector space. �

As shown in [26] this result generalizes to any group with any set of tensors invariant
under that group.

Therefore, we may resolve the Q tensors at any order as a finite linear combination of
binary invariants:

(O)
R Qblock

ν1,ν2,...,νR
=

∑
G∈Gblock

Qblock(G)[Bblock(G)]ν1,ν2,...,νR
, (18)

where Gblock represents the set of graphs present in the order-O, rank-R tensor block (O)
R Qblock,

and the binary invariant Bblock(G) has the same dimensions as the original Q tensor block. The
scalar quantity Qblock(G) is the expansion coefficient.

The resolution of symmetric tensor blocks in the basis of binary invariants in
equation (18) represents a generalization of a technique used at lowest order in [21, 27]
to arbitrary order. This equation also separates the specific interaction dynamics present in
Qblock(G) from the point group symmetry embodied in Bblock(G).

6
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4. The wavefunction through first order

4.1. Lowest-order ground-state wavefunction

Since the Hamiltonian of the lowest-order wavefunction (equation (4)) has the form of a
N(N + 1)/2-dimensional coupled harmonic oscillator, the lowest-order wavefunction will be
a product of one-dimensional, harmonic-oscillator, normal-mode functions.

The lowest-order wavefunction, g�0(q′), for the ground state is given by

g�0(q′) =
P∏

ν=1

φ0(
√

ω̄νq
′
ν), (19)

where

φ0(
√

ω̄νq
′
ν) =

(
ω̄ν

π

) 1
4

exp

(
−1

2
ω̄νq

′
ν

2
)

. (20)

There are N(N+1)/2 normal modes and up to N(N+1)/2 distinct frequencies, a number which
would become impossibly large to solve for if it were not for the SN point group symmetry
expressed in the invariance of the F and G tensors, and the small, N-independent number of
binary invariants spanning the invariant tensor spaces. In [21, 27, 28] we have used this SN

point group symmetry to derive both the frequencies and normal modes of the lowest-order,
Jacobian-weighted wavefunction for arbitrary N. This analysis results in only five distinct
frequencies, associated with center-of-mass and breathing modes, radial and angular singly
excited state modes, and phonon modes. Each of these frequencies is associated with a set of
normal modes which transforms under an irreducible representation of the SN point group.

4.2. First-order wavefunction

Using the SN point group symmetry expressed in the invariance of the F and G tensors, and
the small, N-independent number of binary invariants spanning the invariant tensor spaces, in
[1] we have also derived the first-order correction to the lowest-order, harmonic wavefunction.
If we write

�(q′) = (
1 + δ

1
2 
̂

)
�0(q′) + O(δ), (21)

then 
̂ satisfies the commutator equation

[
̂, Ĥ0]�0 = Ĥ1�0. (22)

To solve this equation, we note that since �0(q′) is a Gaussian function, the derivatives in Ĥ1

and Ĥ0 written in normal coordinates ‘bring down’ normal coordinates from the exponent so
that Ĥ1 effectively becomes a third-order polynomial of only odd powers in q′. Then from
equation (22) 
̂ is a cubic polynomial and of only odd powers in the normal modes. When

̂ is re-expressed in terms of internal displacement coordinates, r′ and γ ′ , it is cubic and of
only odd powers in these internal displacement coordinates.

The ground-state wavefunction is also scalar under SN , and so when it is expressed in
terms of internal displacement coordinates it involves binary invariants which take powers of
the internal displacement coordinates and couple them together to produce a scalar under SN .
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5. A test of the theory: the harmonically confined, harmonically interacting system

The general theory developed in [1, 21], and briefly reviewed in this paper, is extensive, and
we test it on a non-trivial, interacting, analytic solvable model: the harmonically- interacting
system of N particles under harmonic confinement:

H = 1

2

⎛
⎝ N∑

i

[
− ∂2

∂r2
i

+ ω2
t r

2
i

]
+

N∑
i<j

ω2
pr2

ij

⎞
⎠ . (23)

5.1. The wavefunction through first order

In the appendix, we independently solve the harmonically confined, harmonically interacting
system of N particles exactly for the ground-state wavefunction (see equation (A.6)), and then
from this derive the exact perturbation series for the N-body wavefunction (weighted by a
Jacobian) through first order:

�J =
(

1
4
√

π

) N(N+1)

2
(

1 +
1

2
δ

1
2 
ȳ′ + O(δ)

)
exp (−[ȳ′]T �̄ȳ′ ȳ′). (24)

where


ȳ′ = 	( ��)[B( ��)]i r̄
′
i + 	(� �)[B(� �)](ij)γ̄

′
(ij) + 	(

�
)[

B
(

�
)]

i,j,k
r̄ ′
i r̄

′
j r̄

′
k

+ 	( � �� �)[B( � �� �)](ij),k,l γ̄
′
(ij)r̄

′
kr̄

′
l +

(	( � ��)[B( � ��)](ij),(kl),(mn)

+ 	(
����

�)[
B

(
����

�)]
(ij),(kl),(mn)

+ 	(
� � ��

)[
B

(
� � ��

)]
(ij),(kl),(mn)

+ 	(
� �

�
�
)[

B
(
� �

�
�
)]

(ij),(kl),(mn)
+ 	( �

� �
�)[

B
( �
� �

�)]
(ij),(kl),(mn)

+ 	( �
�

�
�

�)[
B

( �
�

�
�

�)]
(ij),(kl),(mn)

+ 	( � �
�� �

)[
B

( � �
�� �

)]
(ij),(kl),(mn)

+ 	( � �� �� �
)[

B
( � �� �� �

)]
(ij),(kl),(mn)

)
γ̄ ′

(ij)γ̄
′
(kl)γ̄

′
(mn), (25)

[ȳ′]T �̄ȳ′ ȳ′ = (	( ���) [B( ���)]i,j + 	( �� ��) [B( �� ��)]i,j )r̄
′
i r̄

′
j

+ 	( � �� )[B( � �� )](ij),kγ̄
′
(ij)r̄

′
k +

(	( � ��)[B( � ��)](ij),(kl)

+ 	( � �
�
)[B

(
� �

�)
](ij),(kl) + 	( �

�
�
�
)[

B
( �
�

�
�
)]

(ij),(kl)

)
γ̄ ′

(ij)γ̄
′
(kl). (26)

Repeated indices i , j , . . . imply summation from 1 to N , while repeated index pairs
(ij), etc imply the ordered sum 1 � i � j � N . For example,

[
B

(
�

)]
i,j,k

r̄ ′
i r̄

′
j r̄

′
k =

r̄ ′
1

3 + r̄ ′
2

3 + · · · + r̄ ′
N

3. In the above expressions for 
ȳ′ and [ȳ′]T �̄ȳ′ ȳ′, we are building up the
invariant polynomials in r̄ ′

i and γ̄ ′
(kl) using the binary invariants as our building blocks. The

scalar coefficients, 	(G) are (derived in the appendix)

	( ��) = − 1

r̄∞
, (27)

	(� �) = A 6 (N + 1)γ∞, (28)

	(
�

) = 1

3r̄3∞
, (29)

	( � �� �) = λ − 1

N
, (30)

	( � ��) = A(B + CD), (31)

8
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	(
����

�) = A(B + CE + F), (32)

	( � � �� ) = A
(
B + C

(
D
3

+
2E
3

))
, (33)

	(
� �

�
�
) = A(B + CE) , (34)

	( �
� �

�) = A
(
B +

2CE
3

− G
)

, (35)

	( �
�

�
�

�) = A
(
B +

CD
3

+ 2G
)

, (36)

	( � �
�� �

) = A
(
B +

CE
3

)
, (37)

	( � �� �� �
) = AB, (38)

	( ���) = λeff +
λ − 1

2N
(λeff − 1), (39)

	( �� ��) = γ∞
2

, (40)

	( � �� ) = r̄∞, (41)

	( � ��) = H(I + J ), (42)

	(
� �

�) = H
(
I − γ∞

2

)
, (43)

	( �
�

�
�
) = H. (44)

In the above equations, we have defined

λ =
√

1 + Nλ2
p, (45)

λp = ωp

ωt

, (46)

γ∞ = (λ − 1)

(N + (λ − 1))
, (47)

r̄2
∞ = 1

2(1 + (N − 1)γ∞)
= N + (λ − 1)

2λN
, (48)

λeff = Nλ

N + λ − 1
, (49)

A = 1

6(1 − γ∞)(1 + (N − 1)γ∞)
, (50)

B = − 8γ 3
∞

(1 − γ∞)2(1 + (N − 1)γ∞)2
, (51)

C = − 6γ∞
(1 − γ∞)2(1 + (N − 1)γ∞)

, (52)

D = (1 + (N − 3)γ∞), (53)

E = −γ∞, (54)

9
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Table 1. Fractional difference, 
	(G) = (	ind(G) − 	gen(G))/	ind(G), between the inde-
pendently derived (ind) and the general formalism (gen) rank-3, rank-2, and rank-1 binary invariant
coefficients when N = 10 000 and λ = 10.

G 
 [	(G)] G 
 [	(G)] G 
 [	(G)]

� 7.0 × 10−16 �
� �
� −1.5 × 10−16 ��� −3.6 × 10−16

� �� � 2.3 × 10−11 �
�
�
�
� −6.0 × 10−13 �� �� −5.1 × 10−11

� �� −4.1 × 10−16
� �
�� � 3.7 × 10−16 � �� 9.6 × 10−15

����
�

−1.3 × 10−16 � �� �� � −2.1 × 10−13 � �� −3.7 × 10−16

� � �� −6.1 × 10−16 �� −8.4 × 10−7
� �
� −2.2 × 10−16

� �
�
� 1.2 × 10−16 � � 8.4 × 10−10 �

�
�
� 2.5 × 10−14

F = (1 + (N − 4)γ∞)

(1 − γ∞)2
, (55)

G = γ∞
(1 − γ∞)2

, (56)

H = 1

2(1 − γ∞)2(1 + (N − 1)γ∞)
, (57)

I = γ 2
∞

(1 + (N − 1)γ∞)
, (58)

J = 1 + (N − 3)γ∞
2

. (59)

This solution through first order is then compared with the wavefunction derived from
the general formalism of [1] (see equations (33) and (117)) and implemented in Mathematica
[29] code. For the case of the general formalism, from equations (19) and (20) we find that

�̄ȳ′ = VT �̄q′V, (60)

[�̄q ′ ]ν1,ν2 = δν1,ν2 ω̄ν1 , (61)

and V is the matrix transforming from the internal displacement coordinate vector ȳ′ to the
normal mode coordinate vector q′. The polynomial 
 of equation (21) is similarly transformed
from a normal coordinate basis to 
ȳ′ of equation (24) in the internal coordinate basis.

In tables 1–4 we compare the binary invariant coefficients, 	(G) , from the general theory
of [1, 21] with the above results derived from the full exact, independent solution above
for N = 10000 particles and two different interparticle interaction strengths, λ. One value
of λ features strongly attractive harmonic interparticle interactions, while the other is for a
weakly bound system with repulsive interparticle interactions (negative λ) for λ just above the
dissociation threshold at λ = −1/

√
N .

In both cases, to within round-off-error determined by the machine precision, exact
agreement is found, confirming the correctness of the general formalism of [1], and its
implementation in Mathematica [29] coding.

10
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Table 2. Rank-3 and rank-2 binary invariant coefficient, 	gen(G), from the general Mathematica
code when N = 10 000 and λ = 10. All of these coefficients are exactly zero in the exactly soluble
independent solution.

G 	(G) G 	(G)

� ��
� �

2.3 × 10−11 � ��� −2.9 × 10−15

�� �� �� 1.1 × 10−11 � � �� � 7.8 × 10−19

� ��
�

2.4 × 10−15 �� �� 4.1 × 10−19

� � �� �
2.2 × 10−15

�
� � � 9.8 × 10−17

�
� �
��

2.0 × 10−15 �
� � �� 1.0 × 10−19

� �� �
� �

8.2 × 10−16 �
�
�
�
�

6.2 × 10−20

� � �� −1.2 × 10−17 �
�
�
� � � 2.1 × 10−20

Table 3. Fractional difference, 
	(G) = (	ind(G) − 	gen(G))/	ind(G), between the
independently derived (ind) and general formalism (gen) rank-3, rank-2 and rank-1 binary invariant
coefficients when N = 10 000 and λ2 = −1/10 000 + 10−10.

G 
 [	(G)] G 
 [	(G)] G 
 [	(G)]

� 1.6 × 10−11 �
� �
� −2.0 × 10−8 ��� −2.6 × 10−11

� �� � −3.8 × 10−8 �
�
�
�
�

1.7 × 10−13 �� �� −1.1 × 10−9

� �� 2.5 × 10−8
� �
�� � 2.1 × 10−11 � �� 6.8 × 10−13

����
�

−3.8 × 10−8 � �� �� � −3.0 × 10−14 � �� −1.6 × 10−7

� � �� 2.5 × 10−8 �� 1.7 × 10−3
� �
�

1.6 × 10−10

� �
�
� 2.2 × 10−5 � � −1.7 × 10−10 �

�
�
� −3.8 × 10−13

Table 4. Rank-3 and rank-2 binary invariant coefficient, 	gen(G), from the general Mathematica
code when N = 10 000 and λ2 = −1/10 000 + 10−10. All of these coefficients are exactly zero in
the exactly soluble independent solution.

G 	(G) G 	(G)

� ��
� � −4.8 × 10−20 � ��� 2.8 × 10−10

�� �� �� 7.9 × 10−24 � � �� � −1.7 × 10−14

� ��
�

1.9 × 10−12 �� �� −2.8 × 10−14

� � �� � −1.9 × 10−16
�
� � � 5.3 × 10−14

�
� �
�� −2.6 × 10−19 �

� � �� −1.2 × 10−17

� �� �
� �

3.8 × 10−20 �
�
�
�
� −5.0 × 10−18

� � �� 8.1 × 10−20 �
�
�
� � � 3.3 × 10−20

6. Summary and conclusions

In this paper we performed the first test of a general formalism from [1] for a fully interacting
N-body wavefunction through first order in a perturbation expansion. This formalism was
verified by comparison to a fully interacting, exactly solvable model problem.

The resources required for a solution to a general N-body problem are understood to
scale at least exponentially with N , making it very challenging to solve for large-N systems
[2, 3]. The present perturbation series will scale exponentially in N if summed to all orders.
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However at first order, the number of terms scale as N6, a scaling, while greatly improved,
still remains challenging. Nonetheless, this N6 scaling is tamed by expanding the perturbation
series about a point where the N-body system has a highly symmetric structure. In the process,
the N-scaling aspect also effectively separates away from the rest of the physics allowing the
N scaling to be treated as a straight mathematical issue, which upon solution yields an N0

scaling.
This highly symmetric structure for arbitrary N is obtained as the number of spatial

dimensions approaches infinity, resulting in a configuration whose point group is isomorphic
to the SN group. All terms in the perturbation series for the Hamiltonian are then invariant
under the N ! elements of the SN group, allowing an expansion in a basis that is also invariant
under these N ! operations. This restriction results in a comparatively small basis at each order
which is independent of N. There are only seven binary invariants at lowest order for any value
of N, and 25 at next order independent of N (except when N is quite small when the number
is even lower). In this paper we demonstrated the completeness of this basis at all orders.
Thus order-by-order the wavefunction, along with other properties, may be derived essentially
analytically.

Since the perturbation parameter is the dimensionality of space and not the interaction,
this approach is equally applicable to weakly interacting systems for which the mean-field
approach is valid, and, perhaps more interestingly, strongly interacting systems for which the
mean-field approach breaks down. Reference [1] extends previous work [21, 22, 27, 28] which
derived energies, frequencies, normal-mode coordinates, wavefunctions and density profiles
at lowest order for quantum systems of confined, interacting particles of any number, N.

The general formalism set forth in [1] for the wavefunction through first order, while
essentially analytic, has many moving parts, and so this paper sets out to verify the formalism
by applying it to the harmonically confined system of N particles interacting via harmonic
potentials which may be attractive or repulsive. This system is exactly soluble in D dimensions,
from which we directly derived the dimensional expansion for the wavefunction through first
order in terms of the binary invariants. This expansion, directly from the exact wavefunction,
has been compared with the wavefunction through first order from the general formalism of [1].
Since at each order there are only a finite number of binary invariants to consider, there are only
a finite number of coefficients to the binary invariant terms that have to be compared. Exact
agreement is found between the coefficients obtained directly from the independent solution
and those derived using the general formalism of [1], confirming this general formalism.

The formalism of [1] is not limited to the harmonic interactions discussed in this paper,
and indeed is quite general. In previous papers we have examined other potentials, in particular
the hard-sphere potential in relation to Bose–Einstein condensates, at lowest order. While the
lowest-order formalism adequately captures the behavior of the system in a range of scattering
length, a , and particle number N for which the mean field is no longer an accurate description,
for large enough a and/or N the lowest-order wavefunction no longer has the flexibility to
adequately represent the actual system. [22] It is thus desirable to apply the general formalism
of [1] for the wavefunction, through first order and verified in this paper, to other systems such
as the Bose–Einstein condensate for interaction strengths and particle number at which the
mean field breaks down.

In principle any observable quantity can be obtained from the wavefunction and as
an illustration in [22] we derived the density profile at lowest order from the lowest-order
wavefunction. With the next-order wavefunction available from the formalism of [1] we can
now derive any observable quantity, such as the density profile, to next order in the perturbation
theory.

12
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It is also important to note that while Laing et al [1] derive the N-particle wavefunction to
next order in perturbation theory, the same basic approach can, in principle, be used to derive
yet higher-order terms in the perturbation series.
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Appendix. Confined, harmonically interacting, analytically solvable model system

In this appendix we derive the exact ground-state wavefunction for a harmonically confined,
harmonically interacting system of N particles in D dimensions, and from it derive the
wavefunction through first order in δ1/2 exactly, where δ = 1/D.

The Hamiltonian of the harmonically interacting model system of identical particles is

H = 1

2

⎛
⎝ N∑

i

[
− ∂2

∂r2
i

+ ω2
t r

2
i

]
+

N∑
i<j

ω2
pr2

ij

⎞
⎠ . (A.1)

Making the orthogonal transformation to center of mass and Jacobi coordinates

R = 1√
N

N∑
k=1

rk and ρi = 1√
i(i + 1)

⎛
⎝ i∑

j=1

rj − iri+1

⎞
⎠ , (A.2)

where 1 � i � N − 1, the Hamiltonian becomes

H = 1

2

(
− ∂2

∂R2 + ω2
t R

2

)
+

1

2

N−1∑
i=1

(
− ∂2

∂ρ2
i

+ ω2
intρ

2
i

)
, (A.3)

the sum of N,D-dimensional harmonic-oscillator Hamiltonians, where

ωint =
√

ω2
t + Nω2

p. (A.4)

Note two things about the Hamiltonian: it is separable and each component has the form of
a D-dimensional harmonic oscillator. Therefore the ground-state solution to the wavefunction
in the Schrödinger equation

H� = E� (A.5)

is the product of harmonic-oscillator wavefunctions

�(R, {ρi};D) = ψ(R;ωt ,D)

N−1∏
i=1

ψ(ρi;ωint,D), (A.6)

where ψ(ρi;ωint,D) is the D-dimensional, harmonic-oscillator, ground-state wavefunction

ψ(r;ω,D) =
√√√√ 2ω

D
2

�
(

D
2

) exp
(
−ω

2
r2

)
(A.7)

satisfying the normalization condition∫ ∞

0
[ψ(r;ω,D)]2rD−1 dr = 1. (A.8)
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The Jacobian-weighted, L = 0 wavefunction �J is obtained by folding into the
wavefunction, the square root of that portion of the Jacobian which depends on the internal
coordinates, i.e. the square root of

�(D−N−1)/2
N∏

j=1

r
(D−1)
j , (A.9)

where � is the Grammian determinant, so that

�J = N�(D−N−1)/4
N∏

j=1

r
(D−1)/2
j ψ(R;ωt ,D)

N−1∏
i=1

ψ(ρi;ωint,D), (A.10)

where N is a normalization constant ensuring that∫
[�J ({ri}, {γjl};D)]2

∏
i

dri

∏
j<k

dγjk = 1. (A.11)

A.1. A perturbation series in 1/
√

D for the exact wavefunction

A.1.1. Dimensional scaling. Now consider transforming to dimensionally scaled oscillator
coordinates

r = D2āt r̄ ρ = D2āt ρ̄ R = D2āt R̄

= D2r̄√
ω̄t

= D2ρ̄√
ω̄t

= D2R̄√
ω̄t

= D1/2r̄√
ωt

= D1/2ρ̄√
ωt

= D1/2R̄√
ωt

,

(A.12)

where the ωt = ω̄t

D3 , and āt is the dimensionally scaled oscillator length of the trap. Both r̄

and ρ̄ are dimensionless. From equation (A.10) we obtain

�J = N�(D−N−1)/4
N∏

j=1

r̄
(D−1)/2
j

√
2

�
(

D
2

)D
D
4 exp

(
−D

2
R̄2

)

×
(

2

�
(

D
2

)
) N−1

2 [
(λD)

D
2
] N−1

2

N−1∏
i=1

exp

(
−λD

2
ρ̄2

i

)
, (A.13)

where

λ = ωint

ωt

. (A.14)

A.1.2. The large-dimension limit. To test the general formalism of [1] we need to expand
equation (A.13) about the large-dimension limit through first order in δ1/2. In the large-
dimension limit the system localizes about a structure where all the radii are equal to r̄∞ and
angle cosines are equal to γ∞. To derive r̄∞ and γ∞ one applies the condition

∂�J

∂r̄i

∣∣∣∣
D=∞

= ∂�J

∂γjk

∣∣∣∣
D=∞

= 0. (A.15)

In this endeavor the following results are useful:

�|D=∞ = (1 + (N − 1)γ∞)(1 − γ∞)N−1, (A.16)
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∂�

∂γjk

∣∣∣∣
D=∞

= −2γ∞(1 − γ∞)N−2, (A.17)

R̄2
∣∣
D=∞ = r̄2

∞(1 + (N − 1)γ∞), (A.18)

∂R̄2

∂r̄i

∣∣∣∣
D=∞

= 2r̄∞
(1 + (N − 1)γ∞)

N
, (A.19)

∂R̄2

∂γjk

∣∣∣∣
D=∞

= 2
r̄2
∞
N

, (A.20)

N−1∑
i=1

ρ̄2
i =

N∑
j=1

ρ̄2
j − R̄2, (A.21)

N−1∑
i=1

ρ̄2
i

∣∣∣∣∣
D=∞

= (N − 1)r̄2
∞(1 − γ∞) = (N − 1)ρ̄∞, (A.22)

∂
∑N−1

i=1 ρ̄2
i

∂rk

∣∣∣∣∣
D=∞

= 2(N − 1)

N
r̄∞(1 − γ∞), (A.23)

∂
∑N−1

i=1 ρ̄2
i

∂γjk

∣∣∣∣∣
D=∞

= − 2

N
r̄2
∞. (A.24)

From equation (A.15) we obtain the parameters r̄∞ and γ∞

γ∞ = (λ − 1)

(N + (λ − 1))
, (A.25)

r̄2
∞ = 1

2(1 + (N − 1)γ∞)
= N + (λ − 1)

2λN
. (A.26)

Equations (A.25) and (A.26) define the D → ∞ structure about which the system oscillates
at finite dimension.

A.1.3. A series expansion about the large-D limit. To derive the wavefunction through order
δ1/2 we perform a series expansion of each of the D-dependent terms in equation (A.13).√

1

�
(

D
2

) = 2
D−2

4 exp
(

D
4

)
4
√

πD
D−1

4

+ O(δ), (A.27)

N∏
i=1

r̄
D−1

2
i = r̄

N(D−1)

2∞ exp

(
N∑

i=1

D
1
2 r̄ ′

i

2r̄∞

)
exp

(
− 1

4r̄2∞

N∑
i=1

r̄ ′2
i

) (
1 +

δ
1
2

2

N∑
i=1

(
r̄ ′3
i

3r̄3∞
− r̄ ′

i

r̄∞

)
+ O(δ)

)
.

(A.28)

We also have

R̄2 = R̄2
∞ + δ1/2R̄′

2(δ
1/2) (A.29)

N−1∑
i=1

ρ̄2
i = (N − 1)ρ̄2

∞ + δ1/2∑ ρ̄ ′
2(δ

1/2), (A.30)
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where

R̄2
∣∣
D→∞ ≡ R̄2

∞ = r̄2
∞(1 + (N − 1)γ∞), (A.31)

N−1∑
i=1

ρ̄2
i

∣∣∣∣∣
D→∞

≡ (N − 1)ρ̄2
∞ = (N − 1)r̄2

∞(1 − γ∞) (A.32)

and

R̄′
2(δ

1/2) = 2r̄∞
N

⎛
⎝(1 + (N − 1)γ∞)

N∑
i=1

r̄ ′
i +

N∑
i<j=1

r̄∞γ̄ ′
ij

⎞
⎠

+
δ1/2

N

⎛
⎝ N∑

i=1

(r̄ ′
i )

2 + 2γ∞
N∑

i<j=1

r̄ ′
i r̄

′
j + 2r̄∞

N∑
i<j=1

(r̄ ′
i + r̄ ′

j )γ̄
′
ij

⎞
⎠ + δ

2

N

N∑
i<j=1

r̄ ′
i r̄

′
j γ̄

′
ij ,

(A.33)

∑ ρ̄ ′
2(δ

1/2) = 2r̄∞
N

⎛
⎝(N − 1)(1 − γ∞)

N∑
i=1

r̄ ′
i −

N∑
i<j=1

r̄∞γ̄ ′
ij

⎞
⎠

+
δ1/2

N

⎛
⎝(N − 1)

N∑
i=1

(r̄ ′
i )

2 − 2γ∞
N∑

i<j=1

r̄ ′
i r̄

′
j − 2r̄∞

N∑
i<j=1

(r̄ ′
i + r̄ ′

j )γ̄
′
ij

⎞
⎠

− δ
2

N

N∑
i<j=1

r̄ ′
i r̄

′
j γ̄

′
ij , (A.34)

so that

exp

(
−D

2
R̄2

) N−1∏
i=1

exp

(
−λD

2
ρ̄2

i

)

= exp

(
−DN

4

)
exp

(
−

N∑
i=1

D
1
2 r̄ ′

i

2r̄∞

)
exp

⎛
⎝−D

1
2 r̄2

∞
N

(1 − λ)

N∑
i<j=1

γ̄ ′
ij

⎞
⎠

× exp

⎛
⎝−1

2

⎛
⎝(

λ − λ − 1

N

) N∑
i=1

r̄ ′2
i − 2(λ − 1)

N
γ∞

N∑
i<j=1

r̄ ′
i r̄

′
j

− 2(λ − 1)

N
r̄∞

N∑
i<j=1

(r̄ ′
i + r̄ ′

j )γ̄
′
ij

⎞
⎠

⎞
⎠

×
⎛
⎝1 + δ

1
2

(
λ − 1

N

) N∑
i<j=1

r̄ ′
i r̄

′
j γ̄

′
ij + O(δ)

⎞
⎠ . (A.35)

The final bit of the puzzle in the dimensional expansion of equation (A.13) is the dimensional
expansion of �(D−N−1)/4. For this we need equations (A.16), (A.17) and

∂2�

∂γij ∂γkl

∣∣∣∣
D=∞

= 0, (A.36)

16



J. Phys. A: Math. Theor. 42 (2009) 205307 W B Laing et al

∂2�

∂γij ∂γjk

∣∣∣∣
D=∞

= 2γ∞(1 − γ∞)N−3, (A.37)

∂2�

∂γ 2
ij

∣∣∣∣∣
D=∞

= −2(1 + (N − 3)γ∞)(1 − γ∞)N−3, (A.38)

∂3�

∂γij ∂γkl∂γmn

∣∣∣∣
D=∞

= 0, (A.39)

∂3�

∂γij ∂γjk∂γlm

∣∣∣∣
D=∞

= 0, (A.40)

∂3�

∂γij ∂γjk∂γkl

∣∣∣∣
D=∞

= −2γ∞(1 − γ∞)N−4, (A.41)

∂3�

∂γij ∂γjk∂γjl

∣∣∣∣
D=∞

= 0, (A.42)

∂3�

∂γij ∂γjk∂γik

∣∣∣∣
D=∞

= 2(1 + (N − 4)γ∞)(1 − γ∞)N−4, (A.43)

∂3�

∂γ 2
ij ∂γkl

∣∣∣∣∣
D=∞

= 4γ∞(1 − γ∞)N−4, (A.44)

∂3�

∂γ 2
ij ∂γjk

∣∣∣∣∣
D=∞

= 0, (A.45)

∂3�

∂γ 3
ij

∣∣∣∣∣
D=∞

= 0, (A.46)

from which we obtain

�(D−N−1)/4 = (
(1 − γ∞)N−1(1 + (N − 1)γ∞)

) D−N−1
4

×
(

1 +
δ

1
2

12(1 − γ∞)(1 + (N − 1)γ∞)

(
− 8γ 3

∞
(1 − γ∞)2(1 + (N − 1)γ∞)2

[B(� �)γ̄ ′]3

− 6γ∞
(1 − γ∞)2(1 + (N − 1)γ∞)

[B(� �)γ̄ ′]

× {
(1 + (N − 3)γ∞)B( � ��) − γ∞B

(
� �

�)}
γ̄ ′γ̄ ′

+
1

(1 − γ∞)2

{
(1 + (N − 4)γ∞)B

(
����

�) − γ∞B
( �
� �

�)
+ 2γ∞B

( �
�

�
�

�)}
γ̄ ′γ̄ ′γ̄ ′

+ 6(N + 1)γ∞[B(� �)γ̄ ′]
)

+ O(δ)

)
exp

⎛
⎝−D

1
2
(λ − 1)r̄2

∞
N

N∑
i<j=1

γ̄ ′
ij

⎞
⎠

× exp

(
− 1

2(1 − γ∞)2(1 + (N − 1)γ∞)

(
− γ 2

∞
(1 + (N − 1)γ∞)

[B(� �)γ̄ ′]2

+

[
(1 + (N − 3)γ∞)

2
B( � ��) − γ∞

2
B( � �

�
)

]
γ̄ ′γ̄ ′

))
, (A.47)
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where [B(G)]ν1,ν2,... are the binary invariants introduced in [1] (briefly reviewed in appendix III)
and G is the graph labeling the binary invariant. The expression B(G)X̄ ′

1X̄
′
2X̄

′
3 is shorthand

for [B(G)]ν1,ν2,ν3 [X̄ ′
1]ν1 [X̄ ′

2]ν2 [X̄ ′
3]ν2 where repeated indices νi are summed over, X̄ ′ is the

r̄′ or γ̄ ′ vector from equation (6), likewise for B(G)X̄ ′
1X̄

′
2 and B(G)X̄ ′

1. Using equations
(A.27), (A.28), (A.35) and (A.47), along with

B(� �) ⊗ B(� �) = B( � ��) + B
(
� �

�)
+ B

( �
�

�
�
)

(A.48)

B(� �) ⊗ B(� �) ⊗ B(� �) = B( � ��) + B
(
����

�)
+ B( � � �� ) + B

(
� �

�
�
)

+ B
( �
� �

�))
+ B

( �
�

�
�

�)
+ B

( � �
�� �

)
+ B

( � �� �� �
)

(A.49)

B(� �) ⊗ B( � ��) = B( � ��) +
B( � � �� )

3
+

B
( �
�

�
�

�)
3

(A.50)

B(� �) ⊗ B( � �
�
)

2
= B( � � �� )

3
+

B
(
����

�)
2

+
B

(
� �

�
�
)

2
+

B
( �
� �

�)
3

+
B

( � �
�� �

)
6

(A.51)

in equation (A.13), with

N = 1

r̄
N(D−1)

2∞
(
(1 − γ∞)N−1(1 + (N − 1)γ∞)

) D−N−1
4

+ O(δ), (A.52)

we obtain the Jacobian-weighted N-body wavefunction in equation (25) for a system of
identical particles under harmonic confinement with harmonic interactions.
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